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Abstract
We derive a multiple integral representing the ground-state density matrix of a
segment of length m of the XXZ spin chain on L lattice sites, which depends on
L only parametrically. This allows us to treat chains of arbitrary finite length.
Specializing to the isotropic limit of the XXX chain we show for small m that the
multiple integrals factorize. We conjecture that this property holds for arbitrary
m and suggest an exponential formula for the density matrix which involves only
a double Cauchy type integral in the exponent. We demonstrate the efficiency of
our formula by computing the next-to-nearest neighbour zz-correlation function
for chain lengths ranging from two to macroscopic numbers.

PACS numbers: 05.30.−d, 75.10.Pq

1. Introduction

Formally, integrable systems at finite temperature have much in common with finite-length
systems. In the former case, the free energy in the thermodynamic limit can be expressed as
the logarithm of the dominant eigenvalue of a quantum transfer matrix [23, 24], whereas in the
latter case the logarithmic derivative of the largest eigenvalue of the usual row-to-row transfer
matrix [1] determines the ground-state energy of the system of length L. In both cases the
technique of nonlinear integral equations [20, 21] can be applied to express the transfer matrix
eigenvalue as an integral over appropriately defined auxiliary functions. The integrals can be
evaluated numerically yielding high precision data for thermodynamic properties at arbitrary
temperatures, or for the ground-state energy at arbitrary lengths, respectively.

Here we show for the XXZ spin-1/2 chain that this formal similarity persists for a multiple
integral representation of the density matrix of a chain segment which was first derived for the
ground state of the infinitely long chain [15, 16, 19] and later generalized to finite temperature
[10, 12]. We also show examples which suggest that the factorization of the multiple integrals,
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that was proven for the ground state of the infinite chain at vanishing magnetic field [3, 6, 7]
and recently observed at finite temperature and nonzero magnetic field [2], might also generally
hold for the ground state of a finite chain.

2. The XXZ chain and its integrable structure

The XXZ chain is an anisotropic generalization of the Heisenberg spin chain. If the value of
all local spins is 1/2 the model is integrable, and its Hamiltonian can be expressed through
the local action of the Pauli matrices σx, σ y, σ z on L sites of a chain,

H = J

L∑
j=1

(
σx

j−1σ
x
j + σ

y

j−1σ
y

j + �
(
σ z

j−1σ
z
j − 1

))
. (1)

This Hamiltonian depends on two real parameters, the exchange coupling J and an anisotropy
parameter �. We shall consider the critical antiferromagnetic regime J > 0,−1 < � � 1.
Setting � = diag(ei�, e−i�),� ∈ [0, 2π ], we fix the boundary conditions requiring that(

e0
1
1 e0

1
2

e0
2
1 e0

2
2

)
= �

(
eL

1
1 eL

1
2

eL
2
1 eL

2
2

)
�−1, (2)

where the eα
β, α, β = 1, 2, denote the gl(2) standard basis

(
σx = e1

2 +e2
1, σ

y = i
(
e1

2 −e2
1

)
, σ z =

e1
1 − e2

2

)
. We call � the twist angle. � = 0 corresponds to the familiar periodic boundary

conditions.
All results in this paper rely heavily on the fact that H can be derived from the well-known

trigonometric R-matrix

R(λ) =




1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1


 , (3)

b(λ) = sh(λ)

sh(λ + η)
, c(λ) = sh(η)

sh(λ + η)
, (4)

of the six-vertex model [1]. Associating a 2 × 2 L-matrix with elements

Lj
α
β
(λ) = R

αγ

βδ (λ)ej
δ
γ

(5)

with every lattice site we can define the monodromy matrix of the XXZ chain,

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
= �LL(λ) · · ·L1(λ). (6)

It provides, by construction, a representation of the Yang–Baxter algebra,

Ř(λ − µ)(T (λ) ⊗ T (µ)) = (T (µ) ⊗ T (λ))Ř(λ − µ), (7)

where Ř = PR if P is the transposition of the two factors in C
2 ⊗ C

2. We define the twisted
transfer matrix t (λ) = tr T (λ). Then, due to (7), the function ln(t−1(0)t (λ)) generates a
sequence of commuting local operators. The first one is proportional to the Hamiltonian (1),

H = 2J sh(η)∂λ ln(t−1(0)t (λ))|λ=0, (8)

with twisted boundary conditions (2) if we identify � = ch(η). The critical regime corresponds
to purely imaginary η = iγ, γ ∈ [0, π). Because of (8) we may solve the eigenvalue problem
of the transfer matrix rather than dealing directly with the Hamiltonian.
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3. The Bethe ansatz solution for the ground state

The twisted transfer matrix t (λ) can be diagonalized by means of the algebraic Bethe ansatz.
Since this technique has been explained elsewhere (see e.g. [22]), we may be content here
with a mere description of the result. Eigenstates |{λ}〉 of t (λ) are generated by the multiple
action of the operators B(λ), equation (6), on the ferromagnetic state |0〉 = (

1
0

)⊗L
,

|{λ}〉 = B
(
λ1 − η

2

)
· · · B

(
λN − η

2

)
|0〉. (9)

Here the set of so-called Bethe roots {λ} = {λj }Nj=1 is not arbitrary, but must be determined
from the Bethe ansatz equations:

1 +
e−2i�shL

(
λj − η

2

)
shL

(
λj + η

2

) N∏
k=1

sh(λj − λk + η)

sh(λj − λk − η)
= 0, j = 1, . . . , N. (10)

The transfer matrix eigenvalues corresponding to the eigenstates (9) are given by

(λ) = ei�
N∏

j=1

sh
(
λ − λj − η

2

)
sh
(
λ − λj + η

2

) +
e−i�shL(λ)

shL(λ + η)

N∏
j=1

sh
(
λ − λj + 3η

2

)
sh
(
λ − λj + η

2

) . (11)

In the following we shall concentrate on the ground-state properties of the XXZ chain.
This brings about severe simplifications. We will be dealing with a single rather special
solution of the Bethe ansatz equations, and we do not have to touch the delicate question under
which circumstances the set of states (9) is complete. Let us fix an even length L of the chain.
Then the ground state of the Hamiltonian (1) is the transfer matrix eigenstate (9) with {λj }L/2

j=1
the unique real solution of (10) for N = L/2. The real and mutually distinct Bethe roots in
this solution uniquely determine a meromorphic auxiliary function

a(λ) = e−2i�shL
(
λ − η

2

)
shL

(
λ + η

2

) L/2∏
k=1

sh(λ − λk + η)

sh(λ − λk − η)
(12)

in the complex plane. In terms of this function the ground-state eigenvalue 0(λ) becomes

0(λ) =
(

1 + a

(
λ +

η

2

))
ei�

L/2∏
j=1

sh
(
λ − λj − η

2

)
sh
(
λ − λj + η

2

) . (13)

It follows from the Bethe ansatz equations that 0(λ) is regular at the points λj − η

2 , j =
1, . . . , L/2. Extensive numerical studies moreover support the conjecture that 0(λ) is
nonzero inside a strip −|η| � Im λ � 0. Our following treatment of the ground state of
the finite-size system is based on this conjecture. It has strong immediate consequences. It
implies that the function 1 +a(λ) is analytic inside the strip −|η|

2 < Im λ � |η|
2 and that its only

zeros in this strip are the Bethe roots. This together with the obvious analytic and asymptotic
properties of a(λ) is enough to set up a set of functional equations for the second logarithmic
derivatives of a(λ) and 1 + a(λ) which together with their known asymptotics determine a(λ)

uniquely [21]. Once the functional equations are formulated it is easy to transform them into
nonlinear integral equations. This procedure is, however, non-unique. We usually work with
two alternative forms of the nonlinear integral equations. One (we call it the ‘a-form’) is
convenient for theoretical purposes. We shall use it in order to write the density matrix as a
multiple integral. The other form (we call it the ‘bb-form’) is useful for numerical calculations.
The bb-form was first derived in [21]. We show it later when we demonstrate the numerical
efficiency of our formulae. Here is the a-form of the nonlinear integral equation:

ln a(λ) = −2i� + Lη + L ln

(
sh
(
λ − η

2

)
sh
(
λ + η

2

)
)

−
∫
C

dω

2π
Kη(λ − ω) ln(1 + a(ω)). (14)
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λ

Re

η
2

η
2

Im

C

C

Figure 1. The canonical contour C surrounds the real axis in counterclockwise manner inside the
strip − |η|

2 < Im λ <
|η|
2 .

The integration contour C is shown in figure 1. It surrounds the real axis in counterclockwise
manner. The kernel Kη(λ) is defined as

Kη(λ) = sh(2η)

ish(λ − η)sh(λ + η)
. (15)

We claim that inside the strip −|η|
2 � Im λ � |η|

2 the function a(λ) as defined in (14) is the same
as the function a(λ) as defined in (12) and (10) with N = L/2. The ground-state eigenvalue
0(λ) can also be expressed as an integral over a(λ):

ln 0(λ) = i� +
L(iπ − η)

2
+
∫
C

dω

2π
Kη

2
(λ − ω) ln(1 + a(ω)). (16)

This determines the ground-state energy and the eigenvalues of the higher conserved quantities
as a function of L.

Another implication of the fact that the function 1 + a(λ) is analytic inside the strip
−|η|

2 < Im λ � |η|
2 and that its only zeros in this strip are the Bethe roots is the formula∫
C

dω

2π i

f (ω)

1 + a(ω)
=

L/2∑
j=1

f (λj )

a′(λj )
(17)

which holds for any function f (λ) analytic in the strip. This formula, when read from right
to left, enables us to rewrite sums over the ground-state Bethe roots as integrals over the
‘canonical contour’ C. It is one of the key tools in the derivation of the integral representation
for the density matrix shown in the next section.

4. The density matrix as a multiple integral

The density matrix is a means to describe a sub-system as part of a larger system in
thermodynamic equilibrium in terms of the degrees of freedom of the sub-system. Typically
the system is divided into two parts, interpreted as sub-system and environment. Then one is
usually interested in the limit when the sub-system is kept fixed and the size of the environment
goes to infinity. Here we shall keep both parts finite and study the influence of the size of the
environment on the sub-system which will be a segment consisting of the first m < L lattice
sites of the XXZ chain. The environment will consist of the remaining sites.



Density matrices for finite segments of Heisenberg chains 4443

Let

ρL = e− H
T

tr e− H
T

(18)

be the statistical operator for the chain at temperature T. Then the density matrix of the
sub-system consisting of the first m lattice sites is defined as

DL(T ) = trm+1···LρL. (19)

By construction, the thermal average of every operator A acting non-trivially only on sites 1
to m can now be written as

〈A〉T = tr1···LAρL = tr1···mA1···m trm+1···LρL = tr1···mA1···mDL(T ), (20)

where A1···m is the restriction of A to a chain consisting of sites 1 to m. In particular, every
two-point function of local operators in the segment 1 to m of the XXZ chain can be brought
into the above form. If we follow the common convention and use the same symbols for the
local operators ej

α
β

and for their restriction to the first m sites, we find the expression

DL
α1···αm

β1···βm
(T ) = tr1···me1

α1
β1

· · · em
αm

βm
DL(T ) = 〈

e1
α1
β1

· · · em
αm

βm

〉
T

(21)

for the matrix elements of the density matrix.
Here we are interested in the unique (normalized) ground state |�0〉 of the system of

finite even length. In the limit T → 0+ the statistical operator ρL converges to the projector
|�0〉〈�0| onto the ground state, and the formula (21) for the density matrix elements turns into

DL
α1···αm

β1···βm
= lim

T →0+
DL

α1···αm

β1···βm
(T ) = 〈�0|e1

α1
β1

· · · em
αm

βm
|�0〉. (22)

We shall use a trick suggested in [18] in order to express (22) entirely in terms of data
related to the monodromy matrix T (λ). Setting λ = 0 in the second equation (6), using
Lj(0) = R0j (0) = P0j (if 0 denotes the auxiliary space) and comparing both sides [13] we
obtain

ej
α
β

= t j−1(0)T α
β (0)t−j (0). (23)

It follows that

DL
α1···αm

β1···βm
= 〈�0|T α1

β1
(0) · · · T αm

βm
(0)t−m(0)|�0〉. (24)

In order to apply the techniques developed in [11] for the finite-temperature case we regularize
the expression by introducing inhomogeneity parameters ξj , j = 1, . . . , m, in the following
way. Define an ‘inhomogeneous density matrix’

DL
α1···αm

β1···βm
(ξ1, . . . , ξm) = 〈{λ}|T α1

β1

(
ξ1 − η

2

) · · · T αm

βm

(
ξm − η

2

)|{λ}〉
〈{λ}|{λ}〉∏m

j=1 0
(
ξj − η

2

) , (25)

where |{λ}〉 is the (unnormalized) Bethe ansatz ground state. Then

DL
α1···αm

β1···βm
= lim

ξ1,...,ξm→ η

2

DL
α1···αm

β1···βm
(ξ1, . . . , ξm). (26)

The expression (25) is of the same form as in the finite-temperature case considered in
[10, 12] with the monodromy matrix elements obeying the same commutation relations (7).
Moreover we have an auxiliary function a(λ) which shares some of the features of the finite-
temperature auxiliary function and satisfies, in particular, equation (17). The inhomogeneous
density matrix can therefore be represented as a multiple integral following the same lines of
reasoning as in [10]. Since the calculations are very similar we can skip all details here and
present the final result.
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Let |α+| be the number of up-spins (or ones) in the sequence of upper indices (αj )
m
j=1 of

the inhomogeneous density matrix element (25) and |β−| the number of down-spins (or twos)
in the sequence of lower indices. The conservation of the z-component of the total spin implies
that all density matrix elements with |α+| + |β−| �= m must vanish. Hence, |β−| = m − |α+|
for the non-vanishing density matrix elements. Those are conveniently labelled by two finite
sequences of positive integers (xj )

|α+|
j=1 and (yk)

m
k=|α+|+1, where xj denotes the position of the

(|α+|− j + 1) th up-spin in (αj )
m
j=1, and yk denotes the position of the (k −|α+|) th down-spin

in (βj )
m
j=1. Then

DL
α1···αm

β1···βm
(ξ1, . . . , ξm) =


|α+|∏

j=1

∫
C

dωj

2π i(1 + a(ωj ))

xj −1∏
k=1

sh(ωj − ξk − η)

m∏
k=xj +1

sh(ωj − ξk)




×

 m∏

j=|α+|+1

∫
C

dωj

2π i(1 + a(ωj ))

yj −1∏
k=1

sh(ωj − ξk + η)

m∏
k=yj +1

sh(ωj − ξk)




× det(−G(ωj , ξk))∏
1�j<k�m sh(ξk − ξj )sh(ωj − ωk − η)

, (27)

where a = 1/a and where the function G(ω, ξ) has to be calculated from the linear integral
equation

G(λ, ξ) = sh(η)

sh(λ − ξ)sh(λ − ξ − η)
+
∫
C

dω G(ω, ξ)

2π(1 + a(ω))
Kη(λ − ω). (28)

The contour C in (27) and (28) is the same as in figure 1. Remarkably, (27) and (28) are
of precisely the same form as in the finite-temperature case, the only difference being the
definition of the auxiliary function a, equation (14). Thus, many results that were obtained for
the finite-temperature case can be carried over to the finite-size case without further effort.

Performing the homogeneous limit ξj → η

2 in (27) we obtain a multiple integral formula
for the density matrix DL

α1···αm

β1···βm
. This limit was described elsewhere [12, 19]. Here we have

to take into account that in the derivation of (27) and (28) we have assumed that the ξj lie
inside C. Thus, in order to calculate the homogeneous limit, we first have to push the contour
to ± η

2 . It turns out that the multiple integral formula for the homogeneous density matrix is
not very efficient numerically (see [8] for the finite-temperature case). For this reason and
for space limitations we leave the homogeneous limit of the multiple integral as an exercise
to the reader. In the next section, we shall rather proceed along the lines of the recent paper
[2] where for the isotropic model the inhomogeneous formula (27) was first split into a sum
over products of single integrals and where the homogeneous limit was performed only after
that. To be more precise, such ‘factorization’ was carried out for m = 2, 3 and then a general
formula inspired by [5] was conjectured for finite temperature but zero magnetic field.

5. Factorization for XXX

In the following, we restrict ourselves to the isotropic limit � → 1. In order to perform this
limit in our formulae we have to replace η by iε with ε → 0. In a similar way, we have to
rescale the spectral parameter λ in (14) and (28), the inhomogeneities, the integration variables
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and the functions a and G. Then

DL
α1···αm

β1···βm
(ξ1, . . . , ξm) =


|α+|∏

j=1

∫
C

dωj

2π(1 + a(ωj ))

xj −1∏
k=1

(ωj − ξk − i)
m∏

k=xj +1

(ωj − ξk)




×

 m∏

j=|α+|+1

∫
C

dωj

2π(1 + a(ωj ))

yj −1∏
k=1

(ωj − ξk + i)
m∏

k=yj +1

(ωj − ξk)




× det G(ωj , ξk)∏
1�j<k�m(ξk − ξj )(ωj − ωk − i)

. (29)

The rescaled auxiliary function a satisfies the nonlinear integral equation

ln a(λ) = −2i� + L ln

(
λ − i

2

λ + i
2

)
−

∫
C

dω

π

ln(1 + a(ω))

1 + (λ − ω)2
, (30)

and a = 1/a. The contour now surrounds the real axis counterclockwise slightly below
Im λ = 1

2 and slightly above Im λ = − 1
2 . The rescaled G in the XXX limit is defined by an

integral equation on the same contour which reads

G(λ, ξ) +
1

(λ − ξ)(λ − ξ − i)
=

∫
C

dω

π(1 + a(ω))

G(ω, ξ)

1 + (λ − ω)2
. (31)

For the following it is important to note that (29) and (31) are exactly of the same form
as in the finite-temperature case [2], where (for m = 2, 3) (31) was used in order to factorize
(29). The argument did not depend on the form of a and therefore applies here in exactly the
same way. We just have to replace the finite-temperature auxiliary function used in [2] by the
finite-size auxiliary function (30).

Let us review the results of [2]. It was shown that the inhomogeneous density matrix
for m up to 3 can be expressed in terms of functions defined by single integrals. The most
important one is

ψ(ξ1, ξ2) =
∫
C

dω G(ω, ξ1)

π(1 + a(ω))

1

(ω − ξ2)(ω − ξ2 − i)
. (32)

We suggest (see the conjecture below) that this is the only transcendental function needed
in the description of the inhomogeneous density matrix for arbitrary m and vanishing twist
angle � = 0, and that in this case, the length dependence of the density matrix enters through
ψ(ξ1, ξ2) alone. If we want to consider nonzero � we have to deal with another family of
functions

φj (ξ) =
∫
C

dω ωj−1G(ω, ξ)

π(1 + a(ω))
, j ∈ N (33)

which where called moments in [2].
For a compact notation of our final formulae it turns out to be useful to introduce

certain combinations of the moments with rational functions. We first of all note that in
the thermodynamic limit for zero twist angle the moments turn into polynomials in ξ of order
j − 1,

lim
1/L→0

lim
�→0

φj (ξ) = φ
(0)
j (ξ) = (−i∂k)

j−1 2 eikξ

1 + ek
|k=0. (34)

The ‘normalized moments’,

ϕj (ξ) = φj (ξ) − φ
(0)
j (ξ), (35)
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then vanish for 1/L,� → 0. We use them to define the symmetric combinations

�n(ξ1, . . . , ξn) = det(ϕj (ξk))|j,k=1,...,n∏
1�j<k�n ξkj

, (36)

where the shorthand notation ξkj = ξk − ξj was employed. The first moment ϕ1 is exceptional
among the ϕj in that it becomes trivial even for finite length if only the twist angle vanishes,

lim
�→0

ϕ1(ξ) = 0. (37)

It follows that

lim
�→0

�j(ξ) = 0, for all j ∈ N. (38)

Instead of ψ(ξ1, ξ2) we shall use the closely related expression

γ (ξ1, ξ2) = [1 + (ξ1 − ξ2)
2]ψ(ξ1, ξ2) − 1 (39)

in terms of which our final formulae look neater. We also define

γ0(ξ1, ξ2) = lim
�→0

γ (ξ1, ξ2). (40)

All density matrix elements for m = 1, 2, 3 can be written in terms of these functions.
A complete list can be found in the appendix of [2] where the functions γ (ξj , ξk) and
�n(ξ1, . . . , ξn) have to be inserted according to our definitions above. To give examples
let us only recall the expressions for the emptiness formation probabilities here,

DL
11
11(ξ1, ξ2) = 1

4
− 1

12
γ (ξ1, ξ2) +

1

4
(�1(ξ1) + �1(ξ2)) +

1

6
�2(ξ1, ξ2), (41a)

DL
111
111(ξ1, ξ2, ξ3) = 1

24
+

1 − ξ13ξ23

24ξ13ξ23
γ (ξ1, ξ2)

+
1 + 5ξ12ξ13

40ξ12ξ13
�1(ξ1) +

1 + 2ξ13ξ23

24ξ13ξ23
�2(ξ1, ξ2) +

1

60
�3(ξ1, ξ2, ξ3)

− 3 + 2ξ 2
12 + 5ξ13ξ23

120ξ13ξ23
γ (ξ1, ξ2)�1(ξ3) + cyclic perms. (41b)

In the untwisted limit (38) applies and our result reduces to

DL
11
11(ξ1, ξ2) = 1

4
− 1

12
γ0(ξ1, ξ2), (42a)

DL
111
111(ξ1, ξ2, ξ3) = 1

24
+

1 − ξ13ξ23

24ξ13ξ23
γ0(ξ1, ξ2) + cyclic perms. (42b)

Note that the only effect of taking the limit 1/L → 0 here is that the function γ0(ξ1, ξ2)

changes into its limiting form

lim
1/L→0

γ0(ξ1, ξ2) = 2[1 + (ξ1 − ξ2)
2]K(ξ1 − ξ2) − 1, (43)

where

K(x) = i ∂x ln

[
�
(

1
2 + ix

2

)
�
(
1 − ix

2

)
�
(

1
2 − ix

2

)
�
(
1 + ix

2

)
]

. (44)

As in the temperature case a similar statement holds true for all density matrix elements for
m = 1, 2. The rational prefactors of γ0(ξj , ξk) are the same as in the thermodynamic limit. For
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this reason it was conjectured in [2] for the temperature case that the exponential formula for
general m obtained in [5] holds also for finite temperature. Further evidence for this conjecture
was supplied by the comparison of high-temperature expansion data for the multiple integrals
and for the conjectured exponential formula for m = 3, 4. Regarding our results described
above it seems likely that the scope of the exponential formula is even wider and that it also
holds in the finite-length case under consideration. Let us briefly recall how it looks like.

In order to obtain a convenient description of all density matrix elements we shall resort to
a notation that we borrowed from [4]1. We arrange them into a column vector hm ∈ (C2)⊗2m

with coordinates labelled by +,− instead of 1, 2 according to the rule,

hε1,...,εm,ε̄m,...,ε̄1
m (λ1, . . . , λm) = DL

(3−ε1)/2,...,(3−εm)/2
(3+ε̄1)/2,...,(3+ε̄m)/2 (ξ1, . . . , ξm) ·

m∏
j=1

(−ε̄j ), (45)

where λj = −iξj for j = 1, . . . , m.

Conjecture. The density matrix of a finite sub-chain of length m of the XXX chain of finite
length L is determined by the vector

hm(λ1, . . . , λm) = 1

2m
e�m(λ1,...,λm)sm, sm =

m∏
j=1

sj,j̄ , (46)

�m(λ1, . . . , λm) = (−1)(m−1)

4

∫ ∫
dµ1

2π i

dµ2

2π i

γ0(iµ1, iµ2)(µ1 − µ2)

[1 − (µ1 − µ2)2]2

× trµ1,2,2,2

{
T
(µ1 + µ2

2
; λ1, . . . , λm

)
⊗ [T (µ1; λ1, . . . , λm)

⊗ T (µ2; λ1, . . . , λm)P−]
}

, (47)

through (45). By the integral over µ1, µ2 it is meant to take the residues at the poles λ1, . . . , λm

of the integrand.

For the notation we are referring to [5]2: the vector s = (1
0

) ⊗ (0
1

) − (0
1

) ⊗ (1
0

)
is

the spin singlet in C
2 ⊗ C

2. The vector spaces in (C2)⊗2m are numbered in the order
1, 2, . . . , n, n̄, n − 1, . . . , 1̄. This defines sm. P− is the projector onto the one-dimensional
subspace of C

2 ⊗ C
2 spanned by s.

In order to define the transfer matrices in the integrand in (47) we first of all introduce an
L-matrix L(λ) ∈ U(sl2) ⊗ End C

2,

L(λ) = ρ(λ, d)

2λ + d
(2λ + 1 + �α ⊗ σα), (48)

where the �α ∈ sl2 are a basis satisfying [�α,�β] = 2iεαβγ �γ , where d is determined by the
Casimir element through d2 = (�α)2 + 1 and where ρ(λ, d) satisfies the functional relation

ρ(λ, d)ρ(λ − 1, d) = 2 − 2λ − d

2λ − d
(49)

1 This definition was first introduced in [3] and later modified in [4].
2 In fact, the only difference between our formulae (46) and (47) and the result of [5] is in the function γ0. In [5] a
function ω was used which is related to γ0 by

ω(λ1 − λ2) = lim
1/L→0

γ0(iλ1, iλ2)

2(1 − (λ1 − λ2)2)
.
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(for more details see [5]). Then, for integer z, the ‘transfer matrices’

trzT (λ; λ1, . . . , λn) = trzL1̄(λ − λ1 − 1) · · · Ln̄(λ − λn − 1)Ln(λ − λn) · · · L1(λ − λ1) (50)

entering (47) are defined by substituting the irreducible representation of U(sl2) of dimension
z into the definition (48) of the L-matrices. For non-integer z this can be analytically continued
into the complex plane.

6. A numerical case study

Finally we would like to demonstrate that the formulae obtained above are numerically
efficient, at least for small m. The examples we will be focusing on are the zz-correlation
functions

〈
σ z

1 σ z
2

〉
and

〈
σ z

1 σ z
3

〉
as functions of the chain length L in the untwisted case � = 0.

For these it is sufficient to know the emptiness formation probability for m = 2, 3, since〈
σ z

1 σ z
2

〉 = 4DL
11
11 − 1,

〈
σ z

1 σ z
3

〉 = 8DL
111
111 − 8DL

11
11 + 1. (51)

Hence, we have to perform the homogeneous limit ξj → i
2 in (42), yielding

〈
σ z

1 σ z
2

〉 = −1

3
γ0

( i

2
,

i

2

)
= 1

3
− 1

3
ψ

( i

2
,

i

2

)
, (52a)

〈
σ z

1 σ z
3

〉 = −1

3
γ0

( i

2
,

i

2

)
− 1

6
γ0,xx

( i

2
,

i

2

)
+

1

3
γ0,xy

( i

2
,

i

2

)
= 1

3
− 4

3
ψ

( i

2
,

i

2

)
− 1

6
ψxx

( i

2
,

i

2

)
+

1

3
ψxy

( i

2
,

i

2

)
, (52b)

where we denote derivatives with respect to the first and second argument by subscripts x and
y, respectively.

In order to calculate the functions ψ,ψxx and ψxy on a computer we switch to the bb-
formulation [8, 21] mentioned in section 3. For real x we define b(x) = a

(
x + i

2

)
and

b(x) = a
(
x − i

2

)
. Then [21]

ln b(x) = L ln(th(πx/2)) +
∫ ∞

−∞

dy

2π
K(x − y) ln(1 + b(y))

−
∫ ∞

−∞

dy

2π
K(x − y + i − i0) ln(1 + b(y)), (53a)

ln b(x) = L ln(th(πx/2)) +
∫ ∞

−∞

dy

2π
K(x − y) ln(1 + b(y))

−
∫ ∞

−∞

dy

2π
K(x − y − i + i0) ln(1 + b(y)), (53b)

where K(x) is defined by (44). The function ψ and its derivatives can be expressed in terms of
b and b. For this purpose, we also have to adapt the form of the function G(λ, ξ). Following
[8] we define g

(±)
ξ (x) = ±G

(
x ± i

2 , ξ
)
. These functions satisfy the linear integral equations:

g
(+)
ξ (x) = π

ch(π(ξ − x))
+
∫ ∞

−∞

dy g
(+)
ξ (y)

2π(1 + b−1(y))
K(x − y)

−
∫ ∞

−∞

dy g
(−)
ξ (y)

2π(1 + b
−1

(y))
K(x − y + i − i0), (54a)
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g
(−)
ξ (x) = π

ch(π(ξ − x))
+
∫ ∞

−∞

dy g
(−)
ξ (y)

2π(1 + b
−1

(y))
K(x − y)

−
∫ ∞

−∞

dy g
(+)
ξ (y)

2π(1 + b−1(y))
K(x − y − i + i0). (54b)

Using b, b and g
(±)
ξ we can express the function ψ(ξ1, ξ2) as

ψ(ξ1, ξ2) = 2K(ξ1 − ξ2) +
∫ ∞

−∞

dx

ch(π(ξ2 − x))

[
g

(+)
ξ1

(x)

1 + b−1(x)
+

g
(−)
ξ1

(x)

1 + b
−1

(x)

]
. (55)

This formulation is now convenient for the numerical evaluation of the zz-correlation functions
(52) for which we need ψ

(
i
2 , i

2

)
, ψxx

(
i
2 , i

2

)
and ψxy

(
i
2 , i

2

)
. For the expansion of the kernel

function we can use

K(x) = 2
∞∑

k=0

(−1)kζa(2k + 1)x2k, (56)

where ζa(x) = ∑∞
k=1(−1)k+1/kx is the alternating zeta series3. Then

ψ
( i

2
,

i

2

)
= 4 ln 2 +

∫ ∞

−∞

i dx

sh(π(x + i0))

[
g

(+)
i/2 (x)

1 + b−1(x)
+

g
(−)
i/2 (x)

1 + b
−1

(x)

]
,

ψxy

( i

2
,

i

2

)
= 6ζ(3) +

∫ ∞

−∞

dx iπch(πx)

sh2(π(x + i0))

[
g

(+)
i/2

′
(x)

1 + b−1(x)
+

g
(−)
i/2

′
(x)

1 + b
−1

(x)

]
, (57)

ψxx

( i

2
,

i

2

)
= −6ζ(3) +

∫ ∞

−∞

i dx

sh(π(x + i0))

[
g

(+)
i/2

′′
(x)

1 + b−1(x)
+

g
(−)
i/2

′′
(x)

1 + b
−1

(x)

]
,

where the primes denote derivatives with respect to ξ . Using (54) and (57) in (52) we calculated
the nearest and next-to-nearest neighbour zz-correlators numerically. The nonlinear integral
equations (53) as well as the linear integral equations (54) were solved iteratively in Fourier
space. The derivatives of g

(±)
ξ with respect to ξ were computed by solving the integral

equations obtained from (54) by taking the derivatives with respect to ξ .
Figure 2 shows the nearest neighbour correlator and figure 3 the next-to-nearest neighbour

correlator. Since our model represents an antiferromagnet the former must be negative and
the latter positive. The weakening of the correlation with growing length can be attributed
to what is called ‘quantum frustration’ in condensed matter physics. Let us illustrate this
notion with an example. The (unnormalized) ground states of the XXX chain of length 2 and
4, respectively, are

|gs〉2 = |↓↑〉 − |↑↓〉︸ ︷︷ ︸
Néel

,

|gs〉4 = 2|↓↑↓↑〉 + 2| ↑ ↓↑↓〉︸ ︷︷ ︸
Néel

− |↓↓↑↑〉 − |↑↓↓↑〉 − |↑↑↓↓〉 − |↓↑↑↓〉︸ ︷︷ ︸
QM frustration

.
(58)

The states with alternating up and down spins on consecutive sites are called Néel states.
They are a ‘classical caricature’ of an antiferromagnet. The zz-correlators in a Néel state
are

〈
σ z

1 σ z
n+1

〉 = (−1)n and realize ‘perfect antiferromagnetic order’. Such type of order is
realized in the ground state of the XXX chain only for L = 2, where the correlations look

3 For Rex > 1 the Riemann zeta function ζ(x) and ζa(x) are related by ζa(x) = (1 − 21−x)ζ(x).
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Figure 2. Nearest neighbour zz-correlation function for chains of even length L; solid curve
represents the analytic continuation to arbitrary real and positive L as defined by our integral
representation.
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Figure 3. Next-to-nearest neighbour zz-correlation function for chains of even length L; solid
curve represents the analytic continuation to arbitrary real and positive L as defined by our integral
representation.

like that in the classical case (see figure 2) and where the next-to-nearest neighbour correlator
is not defined. For L = 4, as can be seen from the ground-state wavefunction (58), there
is a certain probability to have parallel spins on neighbouring sites and antiparallel spins on
next-to-nearest neighbour sites. This reduces the correlations in both cases. For growing chain
length the ‘Néel order’ is even more frustrated, e.g. three or four parallel spins appear, and the
correlations are further reduced, which explains the monotonous behaviour of our curves in
figures 2 and 3.
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Table 1. zz-correlators as functions of the system size.

L 〈σz
1 σz

2 〉 〈σz
1 σz

3 〉
2 −1.000 000 000 000 00 –
4 −0.666 666 666 666 67 0.333 333 333 333 33
8 −0.608 515 568 156 20 0.261 037 205 348 39

16 −0.595 191 363 384 73 0.246 965 841 679 98
32 −0.591 938 643 289 56 0.243 749 379 898 65
64 −0.591 131 278 861 52 0.242 973 291 835 05

128 −0.590 929 940 117 45 0.242 782 231 277 53
256 −0.590 879 657 821 93 0.242 734 814 832 57
512 −0.590 867 093 857 81 0.242 723 006 016 42

1024 −0.590 863 953 834 99 0.242 720 060 216 44
∞ −0.590 862 907 413 26 0.242 719 079 825 74

It follows by inspection of equation (53) that b(x) and b(x) vanish in the thermodynamic
limit L → ∞. Hence, the integrals in (57) all vanish and ψ

(
i
2 , i

2

) = 4 ln 2, ψxy

(
i
2 , i

2

) =
6ζ(3), ψxx

(
i
2 , i

2

) = −6ζ(3). Inserting this into (52) we obtain

lim
L→∞

〈
σ z

1 σ z
2

〉 = 1
3 − 4

3 ln 2, lim
L→∞

〈
σ z

1 σ z
3

〉 = 1
3 − 16

3 ln 2 + 3ζ(3). (59)

The first equation is a corollary to Hulthén’s classical result [14] on the ground-state energy per
site of the XXX chain, and the second one is a well-known result due to Takahashi [25] which
was reproduced from the multiple integral formula of Jimbo et al [15] by Boos and Korepin
[7]. Here we have calculated the correlation functions for finite chain length as correction to
the asymptotic values (59). The zz-correlators for L = 4, far away from these asymptotic
values, can be easily obtained from the ground-state wavefunction |gs〉4 in (58),

〈
σ z

1 σ z
2

〉 = − 2
3

and
〈
σ z

1 σ z
3

〉 = 1
3 . It is remarkable that these values are reproduced from our integral equations

to 13 digits precision without too much effort (see table 1).

7. Conclusions

We have obtained a multiple integral formula (27) for the zero-temperature limit of the density
matrix of a finite segment of the XXZ chain which holds for every even chain length L and
is again of the same form as the formerly known formula for finite temperature but infinite
length. The multiple integrals are ‘parameterized’ by a pair of functions a(λ),G(λ, ξ) which
fix their physical meaning. For one such pair we obtain the finite-temperature density matrix
for another pair the ground-state density matrix for the finite chain, the only difference being
the driving term in the nonlinear integral equation (14) for a(λ). In the thermodynamic limit for
vanishing twist angle (the zero-temperature limit for vanishing magnetic field) the integrands
in the multiple integrals turn into explicit functions and the formulae of Jimbo et al [15, 16]
are recovered.

Even the linear integral equations for G(λ, ξ) are of the same form in the temperature
case and in the finite-length case. Since only this form was relevant for the reduction of
the multiple integrals to sums over products of single integrals (the ‘factorization’) in the
finite-temperature case [2], a similar factorized form of the short-range correlations is valid
for finite length and the conjecture formulated for the general finite-temperature case in [2] is
likely to hold in the finite-length case as well (see (46)). The phenomenon of factorization of
correlation functions, first observed in [7] and rather well understood in the thermodynamic
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limit for zero temperature and vanishing external field by now [5], may turn out to be valid
in a much broader context (compare the discussion in the summary of [9]) and may even turn
out to be a general characteristic of quantum integrable models related to the Yang–Baxter
equation.

In this work, we have concentrated on the density matrix, since we wanted to test if
the factorization scheme of [2] also works in the finite-length case. We have seen that this
is indeed the case. Concerning the multiple integral representation we have no doubt that
similar formulae as derived for the two-point functions [10] and for a generating function of
the zz-correlation functions [11] for finite-temperature in the thermodynamic limit also hold
for finite length. It will be interesting to compare the formulae for the generating function
obtainable by using the auxiliary function a and our function G with the result of [17], where
another multiple integral for the finite-length system was derived.
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